n⿺ㄱㄱㄱ Monitoring Relay

Monitoring Relays MR Series

3-Phase current/voltage monitoring
Multifunction
Fault latch
Supply voltage selectable via power modules
2 Change-over contacts
Width 22.5 mm
Industrial design

Options and ordering codes

Dimensions

MR-PFRAT

1. Functions

Voltage monitoring in 3-phase mains with adjustable thresholds, adjustable tripping delay, monitoring of phase sequence and phase failure monitoring of asymmetry with adjustable threshold and the following functions (selectable by means of rotary switch)

UNDER	Undervoltage monitoring
UNDER+SEQ	Undervoltage monitoring and
monitoring of phase sequence	
WIN	Monitoring of window between Min and Max
WIN+SEQ	Monitoring the window between Min and Max and monitoring of phase sequence

2. Time ranges

ent range
Tripping delay: 0.1 s 10s

3. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque:
max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Output circuit

2 potential free change-over contacts
Rated voltage:
250V AC

Switching capacity (distance 750VA (3A / 250V AC)
Switching capacity (distance 1250VA (5A / 250V AC)
Fusing:
Mechanical life: $\quad 20 \times 106$ operations
Electrical life:
Switching frequency:

Overvoltage category:
Rated surge voltage:

7. Accuracy

Base accuracy:
Frequency response: Adjustment accuracy: Repetition accuracy: Voltage influence: Temperature influence: 2×105 operations at 1000 VA resistive load max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (according to IEC 947-5-1) III (according to IEC 60664-1) 4 kV

9. Ambient conditions

Ambient temperature:
Storage temperature:
Transport temperature: Relative humidity:

Pollution degree: Vibration resistance:

Shock resistance:

4. Indicators

Red LED ON/OFF:
Red LED flashing:

Yellow LED ON/OFF

indication of failure of the corresponding threshold indication of tripping delay of the corresponding threshold indication of relay output

6. Input circuit

Supply voltage:
Tolerance:

Rated frequency:
Rated consumption: Duration of operation: Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
8. Measuring circuit

Fusing:
Measured variable: Input:

Overload capacity:) 400/230	toras (N)L1-L2-L3	(MR-fRAT)
	3(N)~ 115/66V	$3(\mathrm{~N}) \sim 173 / 100 \mathrm{~V}$	(MR-PFRAT)
	3(N)~ $230 / 132 \mathrm{~V}$	3(N) $\sim 345 / 199 \mathrm{~V}$	(MR-PFRAT)
	$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$	$3(\mathrm{~N}) \sim 600 / 346 \mathrm{~V}$	(MR-PFRAT)
Input resistance:			
	3(N)~ 115/66V	220k:	(MR-PFRAT)
	$3(\mathrm{~N}) \sim 230 / 132 \mathrm{~V}$	470k:	(MR-PFRAT)
	$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$	1M:	(MR-PFRAT)
Switching threshold			
	Max:	-20% to $+30 \%$ of UN	
	Min:	-30% to $+20 \%$ of UN	
Asymmetry:	5\% to 25\%		
Overvoltage category:	III (according to IEC 60664-1)		

MR-PFRAT-cont

For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured voltage was chosen to be greater than the maximum value If a failure already exists when the device is activated, the output relays remain in off-position and the LED for the corresponding threshold is illuminated.

Under voltage monitoring (UNDER, UNDER+SEQ)

When the measured voltage (mean value of phase-to-phase voltages) falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED
MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured voltage exceeds the value adjusted at the MAX-regulator
Window function (WIN, WIN+SEQ)
The output relays switch into on-position (yellow LED illuminated) when the measured voltage (mean value of phase-to-phase voltages) exceeds the value adjusted at the MIN-regulator. When the measured voltage exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired red LED MAX illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated).
Phase sequence monitoring (SEQ)
Phase sequence monitoring is selectable for all functions.
If a change in phase sequence is detected (red LED SEQ illuminated), the output relays switch into off-position immediately (yellow LED not illuminated).
Phase failure monitoring (SEQ)
If one of the phase voltages fails, the set interval of the tripping delay (DELAY) begins (red LED SEQ flashes). After the interval has expired (red LED SEQ illuminated), the output relays switch into off-position (yellow LED not illuminated).
Reverse voltages of a consumer (e.g. a motor which continues to run on two phases only) do not effect the disconnection but can be monitored by using a proper value for the asymmetry. Asymmetry monitoring
If the asymmetry of the phase-to-phase voltages exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relays switch into off-position (yellow LED not illuminated).
If the neutral wire is connected to the device, the asymmetry of the phase voltages referred to the neutral wire (Y -voltage) is monitored also. In that case both values of the asymmetry are evaluated and if one of the values exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relays switch into off-position (yellow LED not illuminated).
Loss of neutral wire by means of evaluation of asymmetry
A break of the neutral wire between power line and machinery is detected as soon as asymmetry between phase-to-phase voltage and neutral wire occurs. If the asymmetry exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relays switch

MR-PFRAT Phase Loss

MR-PFRAT Asymmetrical

MR-PFRAT Window

MR-PFRAT Sequence

MR-PFRAT Undervoltage

1. Functions

Monitoring of phase sequence, phase failure and detection of return voltage (by means of evaluating the asymmetry)

2. Time ranges

Start-up suppression time Tripping delay: Adjustment range fixed, max. 500 ms fixed, max. 350ms

3. Indicators

Green LED ON:
Yellow LED ON/OFF:
indication of supply voltage indication of relay output

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20
Tightening torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage: 3(N)~ 115/66V
$3(N) \sim 230 / 132 V$
$3(N) \sim 400 / 230 \mathrm{~V}$

Tolerance:

$3(\mathrm{~N}) \sim 115 / 66 \mathrm{~V}$
$3(N) \sim 230 / 132 V$
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$ Rated frequency: Rated consumption: $3(\mathrm{~N}) \sim 115 / 66 \mathrm{~V}$ 3(N)~ 230/132V $3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$ Duration of operation: Reset time:
Residual ripple for DC:
Drop-out voltage: Overvoltage category: Rated surge voltage:
7. Measuring circuit

Measured variable:

 Input:Input resistance:

Overvoltage category
Rated surge voltage:

terminals (N)-L1-L2-L3	(MR-PFR115VS02)
(= measuring voltage)	
terminals (N)-L1-L2-L3	(MR-PFR230VS02)
(= measuring voltage)	
terminals (N)-L1-L2-L3	(MR-PFR400VS02)
(= measuring voltage)	
3(N)~ 99 to 132V	(MR-PFR115VS02)
$3(\mathrm{~N}) \sim 198$ to 264 V	(MR-PFR230VS02)
3(N)~ 342 to 457V	(MR-PFR400VS02)
48 to 63 Hz	
3VA	(MR-PFR115VS02)
6VA	(MR-PFR230VS02)
9VA	(MR-PFR400VS02)
100\%	
<100ms	
-	
>20\% of the supply voltage	
III (according to IEC 60664-1)	
4kV	

AC Sinus, 48 to 63 Hz
$3(N) \sim 115 / 66 \mathrm{~V}$

3(N)~ 230/132V
$3(N) \sim 400 / 230 \mathrm{~V}$
$3(N) \sim 115 / 66 V$
$3(N) \sim 230 / 132 V$
$3(N) \sim 400 / 230 V$

3(N)~ 115/66V
3(N)~ 230/132V $3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$
fixed, typ. 30\% III (according to IEC 60664-1) 4kV

6. Output circuit

2 potential free change-over contacts
Rated voltage:
Switching capacity (distance $<5 \mathrm{~mm}$):
Switching capacity (distance $>5 \mathrm{~mm}$):
Fusing:
Mechanical life:
Electrical life:
Switching frequency:

Overvoltage category
Rated surge voltage:

8. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
9. Ambient conditions

Ambient temperature:

Storage temperature:
Transport temperature:
Relative humidity:

Pollution degree:
Vibration resistance:
Shock resistance:

250V AC
750VA (3A / 250V AC) 1250VA (5A / 250V AC)
5A fast acting
20×106 operations
2×105 operations
at 1000 VA resistive load
max. $60 / \mathrm{min}$ at 100VA resistive load max. $6 / \mathrm{min}$ at 1000VA resistive load (according to IEC 947-5-1)
III (according to IEC 60664-1)
4 kV
-25 to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1)
-25 to $+40^{\circ} \mathrm{C}$ (according to UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(according to IEC 721-3-3 class 3K3)
3 (according to IEC 60664-1)
0 to 55 Hz 0.35 mm
(according to IEC 68-2-6)
15 g 11 ms (according to IEC 68-2-27)

Connection Diagram

Phase sequence monitoring
When all the phases are connected in the correct sequence and the measured asymmetry is less than the fixed
value, the output relays switch into on-position (yellow LED illuminated). When the phase sequence changes, the
output relays switch into off-position (yellow LED not illuminated).
Phase failure monitoring
When one of the three phases fails, the output relays switch into
off-position (yellow LED not illuminated).
Detection of reverse voltage (by means of evaluation of asymmetry)
The output relays switch into off-position (yellow LED not illuminated) when the asymmetry between the phase
voltages exceeds the fixed value of the asymmetry.
An asymmetry caused by the reverse voltage of a consumer (e.g. a motor which continues to run on two phases only) does not effect the disconnection

Phase failure monitoring

MR-1PVM

1. Functions

AC/DC voltage monitoring in 1-phase mains with adjustable
thresholds, timing for start-up suppression and tripping delay
separately adjustable and the following functions (selectable by means of rotary switch)

OVER
OVER+LATCH
UNDER
UNDER+LATCH
WIN

WIN+LATCH
2. Time ranges

	Adjustment range	
Start-up suppression time:	0 s	10 s
Tripping delay:	0.1 s	10 s

3. Indicators

Green LED ON: Green LED flashing: Yellow LED ON/OFF: Red LED ON/OFF:

Red LED flashing:
indication of supply voltage indication of start-up suppression time indication of relay output indication of failure of the corresponding threshold indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque:
max. 1Nm
Terminal capacity
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

6. Output circuit

2 potential free change-over contacts
Rated voltage:
250 V AC
Switching capacity (distance 750 VA (3A / 250V AC)
Switching capacity (distance 1250VA (5A / 250V AC)

using:

Mechanical life:
Electrical life:
Switching frequency:

Overvoltage category:
Rated surge voltage:
A fast acting
20×106 operations
2×105 operations
at 1000 VA resistive load
max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (according to IEC 947-5-1)
III (according to IEC 60664-1)
4kV

8. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy: Repetition accuracy:
Voltage influence:
Temperature influence:
$\pm 5 \%$ (of maximum scale value)
-10% to $+5 \%$ (at 16.6 to 400 Hz)
d5\% (of maximum scale value)
d2\%
d0.5\%
d0. $1 \% /{ }^{\circ} \mathrm{C}$

9. Ambient conditions

Ambient temperature:
Storage temperature: Transport temperature: Relative humidity:

Pollution degree: Vibration resistance:

Shock resistance:

25 to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1) -25 to $+40^{\circ} \mathrm{C}$ (according to UL 508) -25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85% (according to IEC 721-3-3 class 3K3) 3 (according to IEC 60664-1)
10 to 55 Hz 0.35 mm
(according to IEC 68-2-6)
15 g 11 ms (according to IEC 68-2-27)
5. Input circuit

Supply voltage

Tolerance:
Rated frequency:

Rated consumption: Duration of operation: Reset time:
Residual ripple for DC: Drop-out voltage: Overvoltage category: Rated surge voltage:

7. Measuring circuit

Fusing:
Measured variable:
Input:

Overload capacity
nput resistance:

Switching threshold

Overvoltage category:
Rated surge voltage:

12 to 400V AC terminals A1-A2 (galvanically separated) selectable via power supplies MR-PS
according to specification
of power module
according to specification
of power module
2VA (1.5W)
100\%
500 ms
$>30 \%$ of the supply voltage III (according to IEC 60664-1) 4kV
max. 20A (according to UL 508)
DC or AC Sinus (16.6 to 400 Hz)

30V AC/DC	terminals E-F1(+)
60V AC/DC	terminals E-F2(+)
300V AC/DC	terminals E-F3(+)
30V AC/DC	100Veff
60V AC/DC	150Veff
300V AC/DC	440 Veff
30V AC/DC	$47 \mathrm{k}:$
60V AC/DC	$100 \mathrm{k}:$
300V AC/DC	$470 \mathrm{k}:$
Max:	10% to 100% of UN
Min:	5% to 95% of UN
III (according to IEC $60664-1$)	
4kV	

30 volts

Connection Diagram

60 volts

Connection Diagram

300 volts

Connection Diagram

When the supply voltage U is applied, the output relays switch into on-position (yellow LED illuminated) and the set interval of the start-up suppression (START) begins (green LED U flashes). Changes of the measured voltage during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily.
For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured voltage was chosen to be greater than the maximum value.
Overvoltage monitoring (OVER, OVER+LATCH)
When the measured voltage exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured voltage falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated).
If the fault latch is activated (OVER+LATCH) and the measured voltage remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured voltage falls below the value adjusted at the MIN-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).
begins with the set interval of the start-up suppression (STA
Undervoltage monitoring (UNDER, UNDER+LATCH)
When the measured voltage falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN
illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured voltage exceeds the value adjusted at the MAX-regulator.
If the fault latch is activated (UNDER+LATCH) and the measured voltage remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured voltage exceeds the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).
Window function (WIN, WIN+LATCH)
The output relays switch into on-position (yellow LED illuminated) when the measured voltage exceeds the value adjusted at the MIN-regulator. When the measured voltage exceeds the value adjusted at the MAXregulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED not
illuminated). The output relays again switch into on-position (yellow LED illuminated) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated).
If the fault latch is activated (WIN+LATCH) and the measured voltage remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured voltage exceeds the value adjusted at the MIN-regulator. If the measured voltage remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured voltage falls below the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

MR-1PVM Over Voltage

MR-1PVM Under Voltage

MR-1PVM Window + Latch

MR-1PIM

1. Functions

AC/DC current monitoring in 1-phase mains with adjustable
thresholds, timing for start-up suppression and tripping delay
separately adjustable and the following functions (selectable by means of rotary switch)

OVER+LATCH
UNDER
UNDER+LATCH
WIN
WIN+LATCH
2. Time ranges

Start-up suppression time:
Tripping delay:

3. Indicators

Green LED ON:
Green LED flashing:
Yellow LED ON/OFF:
Red LED ON/OFF:
Red LED flashing:

Overcurrent monitoring
Overcurrent monitoring with fault latch
Undercurrent monitoring
Undercurrent monitoring with fault latch
Monitoring the window between
Min and Max
Monitoring the window between
Min and Max with fault latch

Adjustment range
 Os
 10 s

$0.1 \mathrm{~s} \quad 10 \mathrm{~s}$
indication of supply voltage
indication of start-up suppression time
indication of relay output
indication of failure
of the corresponding threshold
indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque:
max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

6. Output circuit

2 potential free change-over contacts Rated voltage:
Switching capacity (distance $<5 \mathrm{~mm}$):
Switching capacity (distance $>5 \mathrm{~mm}$):
Fusing:
Mechanical life:
Electrical life:
Switching frequency:

Overvoltage category:
Rated surge voltage:
8. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy
Repetition accuracy:
Voltage influence:
Temperature influence:

9. Ambient conditions

Ambient temperature:
Storage temperature: Transport temperature:
Relative humidity:
Pollution degree:
Vibration resistance:

Shock resistance:

250 V AC
750 VA (3A / 250V AC)
1250VA (5A / 250V AC)
5A fast acting
20×106 operations
2×105 operations
at 1000 VA resistive load
max. $60 / \mathrm{min}$ at 100 VA resistive load $\max .6 / \mathrm{min}$ at 1000 VA resistive load
(according to IEC 947-5-1)
III (according to IEC 60664-1)
4 kV
$\pm 5 \%$ (of maximum scale value)
-10% to $+5 \%$ (16.6 to 400 Hz)
d5\% (of maximum scale value) d2\%
d $0.1 \% /{ }^{\circ} \mathrm{C}$
-25 to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1)
25 to $+40^{\circ} \mathrm{C}$ (according to UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(according to IEC 721-3-3 class 3K3)
3 (according to IEC 60664-1)
10 to 55 Hz 0.35 mm
(according to IEC 68-2-6)
15 g 11 ms (according to IEC 68-2-27)
5. Input circuit

Supply voltage:

Tolerance:
Rated frequency:
Rated consumption:
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
7. Measuring circuit

Measured variable:
Input:

Overload capacity:

Input resistance:

Switching threshold

Overvoltage category:
Rated surge voltage:

12 to 400 V AC terminals A1-A2 (galvanically separated) selectable via power supply MR-PS
according to specification
of power module
according to specification
of power module
2VA (1.5W) 100%
500ms
$>30 \%$ of the supply voltage III (according to IEC 60664-1)
4 kV

DC or AC Sinus (16.6 to 400 Hz)

$100 \mathrm{~mA} \mathrm{AC/DC}$	terminals K-11(+)
1A AC/DC	terminals K-12(+)
10A AC/DC	terminals K-13(+) (distance $>5 \mathrm{~mm}$)
$100 \mathrm{~mA} \mathrm{AC/DC}$	800 mA
1A AC/DC	3A
10A AC/DC	12A
$100 \mathrm{~mA} \mathrm{AC/DC}$	470m:
1A AC/DC	47m:
10A AC/DC	5 m :
Max:	10\% to 100% of IN
Min:	5% to 95% of IN
III (according to IEC 60664-1)	
4 kV	

Connection Diagram

Connection Diagram

Connection Diagram

When the supply voltage U is applied, the output relays switch into on-position (yellow LED illuminated) and the set interval of the start-up suppression (START) begins (green LED U flashes). Changes of the measured current during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily.
For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured current was chosen to be greater than the maximum value.

Overcurrent monitoring (OVER, OVER+LATCH)

When the measured current exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured current falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated).
If the fault latch is activated (OVER+LATCH) and the measured current remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured current falls below the value adjusted at the MIN-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with he set interval
When the measurd uir (fall below the value adi
When the measured current falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured current exceeds the value adjusted at the MAX-regulator
If the fault latch is activated (UNDER+LATCH) and the measured current remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured current exceeds the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring Cycle begins with the set interval of the start-up suppression (START).
The output relays switch into on-position (yellow LED illuminated) when the measured current exceeds the value adjusted at the MIN-regulator. When the measured current exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated) when the measured current falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured current falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated).
If the fault latch is activated (WIN+LATCH) and the measured current remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured current exceeds the value adjusted at the MIN-regulator. If the measured current remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the offposition even if the measured current falls below the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position
and a new measuring cycle begins with the set interval of the start-up suppression (START). and a new measuring cycle begins with the set interval of the start-up suppression (START).

MR-1PVM Over Voltage

MR-1PVM Window

MR-1PVM Under Voltage

MR-1PVM Window + Latch

